

4. Beyond tree Level We have ostablished (guile bringly) that in GUT for some
We have osta blished (quite bringly) that in GUT for some
DB70 Upt Nactions
$G^{(n)}(p_1 \dots p_n) = (1) G^{(4)}(p_1 - p_n) + \cdots$
It will be more convenient to consider ampetated Grean's functions: $\Gamma^{(u)}(\rho_u,\rho_u) = i\rangle \widetilde{\Gamma}^{(u)}(\rho_u,\rho_u)$
The same applies to west interactions if he exchanged particle
is a Wit and the external states are grants (except t) or leptons
Diggramatically (note: EW from here on, so we can just use the OFR chial structure).
= (amortated!)
Formally, lim [M2) = 0
M-Joo (/ / /)
Go to 1-10 op. Stay with weak interactions wherey, and grate tylvons
as light. Then we want to show
+ E + F + F + F + F + F + F + F + F + F
$=\left(\overline{Z_{1}^{\prime}}\right)^{4}\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
, / Ј
At least for now, graphs on LHS are in 1-1 correspondence with RHS.
So compare one at 9 hme:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Lrecall, Mis has explicit me
Non-sense. Lits ~ Joyk (L)2 (S) (S) (S) = finite (renormalizable garge)
RHS ~ $\int d^{4}k \left(\frac{1}{k}\right)^{1} \left(\frac{g_{-}}{k^{2}}\right) \left(\frac{1}{-M^{2}}\right) = \log divergent$
O.ps! We need to reno-malite. But let's by to see if the
finite part has the comect pi dependence, while the copat
has hig p. dependence.
To this end take & on both sides of the egration.
Now if k=loop mon then depending on how you route
momentum Mrough the graph, Di (firsome i=), n) will appear in
at least one but possibly more likes. On any propagator
2 increases the degree of convergence:
$\frac{\partial}{\partial \rho_{i}} \frac{1}{(k+\rho_{i})^{2}-m^{2}} = -\frac{2k\cdot \rho_{i}}{((k+\rho_{i})^{2}-m^{2})^{2}} \sim \frac{1}{k^{2}} \text{ at lage } k$
Diagramatically $\frac{\partial}{\partial \rho_i} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{ c+\rho_i }{ c-\rho_i } = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c+\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 - m^2} \left(\frac{ c-\rho_i }{ c-\rho_i } \right) = \frac{1}{(k+\rho_i)^2 -$
Backto 4pt: tale op;

To see Mat Mis works, consider lim M. Smy

Since lim Miling Conveyes uniformly and so does
$\int Im M^2 \left(\right) \frac{1}{k^2 - M^2} = \int -\left(\right)$
J L / K-Mi J L)
std. math nansunse > they are equal. But the RHJ is
Just mi XX.
Do Mis Ireach propagator on which in acts, and
for every i=1 4. (Do also am it internal light particles
hare masses; note m=light, M=heary).
Note: 30 or 3 does not increase degree of convergence when it acts
on external legs. > Consider amptated Green functions.
Dealing properly with 2 pt functions will result in the factor of 21/2
for each external teg. It is fairly superfluor, so we'll ignore from now on.
So $\frac{\partial}{\partial p_i}$ $=$ $\frac{\partial}{\partial p_i}$ $(\text{from here on its understood this means \lim_{n\to\infty} \mu^{-1}() = \lim_{n\to\infty} ().$
Integrating back we have
+ f(p, p, ph) Lb+ not p.
Repeating the argument for he shor B; (and m) we conclude Might
$\frac{1}{2} = \frac{1}{2} + C$
G can report on 9s, 9 and M (namely grand Mw). Moreover its
infinite. Finally it must have the same chiral structure as the other lesms XMI-tr) & X. (1-85) which up to a numerical factor is X
LIME MILLION MULTER WHICH UP TO A NUMERICAL TRUTT IS

so rewriting $C \rightarrow C \times$ and noting that $C \sim O\left(\frac{ds}{\pi}\right)$ we have
of rowse this goes through when we include all 1-loop diagrams.
So we obtain
$\mathcal{L}^{(4)}(\rho_1,,\rho_4) = \frac{1}{M_N^2} \left(\mathcal{L}^{(4)}(\rho_1,,\rho_4) + \dots \right)$
where: P = amputated Green functions, renormalited
r = idem in EFT
To = i dem with a zero momentus intertion of the operator of
a = Finite coefficient (d-pat in renormal, zata)
higher order in M?
•
Comments C 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2
- G has an expansion, G=1 + c, d + c, (d) + c, it may depend in M
bet not an pi-pu norm.
- The dependence on p Pu is the same = same analytic stricture (same int,
poles, residues, what not) provided [P.] << Mw. ("stret on fill 1 EFT,).
The two differ heally at PNM.
- The above result; summarized by status, hist Ley = 2 + mcho
- For many applica tions (es, mixing) we need
amp ~ < 4 / 1 / 1/10 = 1 a < 4 / 10 / 1/10 >
amp a < Ygind / Jint 1410) = IC < Ygind O / Ying > Often hard to compute
- Can be extended to all orders in my hillesting
- Can be extended to all orders in perhabation Theory

5. RCE improvement

So G = C/M, 9s) is dimension-loss - it depends on M Morayle We

ratio M/m, m= renormalitation scale, which has been implicit.

Now

M & <411 GO 14init > = 0 because amplifules are prince penant

Since C = C (7,19,) (= + B/g) =) C (t,5) = - Yo (g) C/t,5), f= In A

Solution: as before, let $\bar{g}: \frac{\partial \bar{g}(1)}{\partial t} = \beta(\bar{g}(1)) + \bar{g}(0,g) = g$

Before we solve for G, let's review M solution for an observable

$$\frac{df}{dt} = 0$$
, or $\left(\frac{\partial}{\partial t} + \rho(f)\frac{\partial}{\partial g}\right) f(t,g) = 0$. We had $f(t,g) = f(0,g(-t))$

Let's obtain his again in a manner that may shed a bit

more light into the RG.

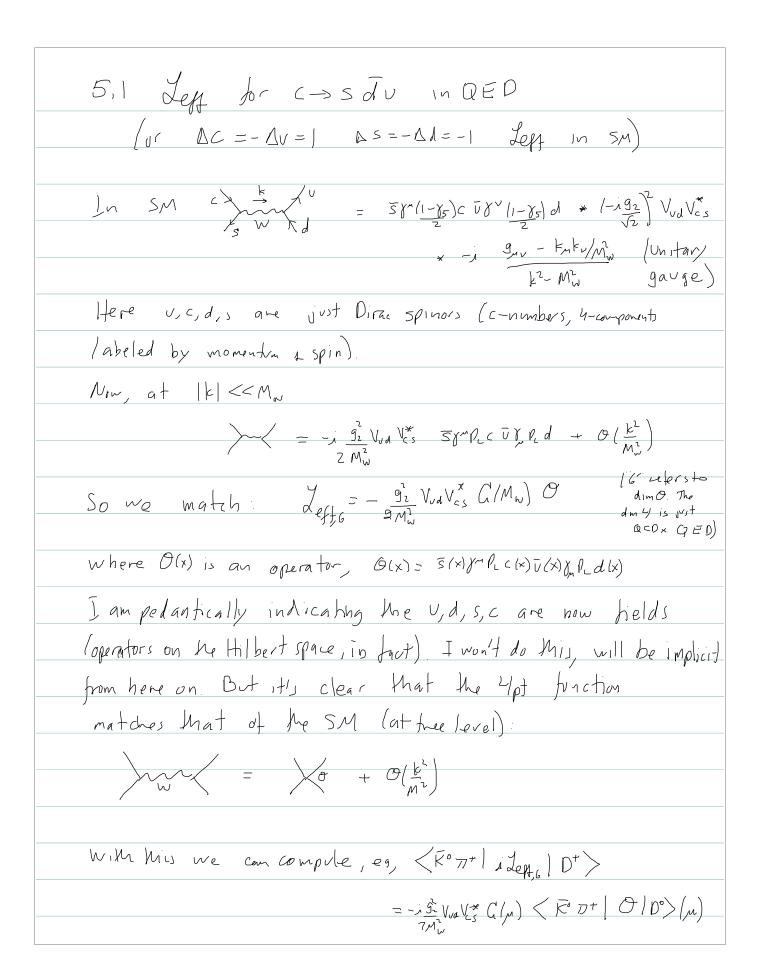
First the Eq. of=0 means that along \$1t) the brackion is constant.

Now, pick an arbitrary point in this tog plane, say P = [t',g')[]''I trop pines at end) and set f = f(t',g) for all points on the trajectory that goes throug $P : f(t',g') = f(t'+t,\bar{g}(t))$ (with $\bar{g}(0) = g'$ as before) Then setting t = -t', $f(t',g') = f(0,\bar{g}(-t'))$ (and now drup prima)

So d is just the rule of change along the trajectory
and to solve $\left(\frac{2}{2} + \beta(g)\frac{2}{2g}\right)G(t,g) = -\gamma(g)G(t,g)$
we can evaluate this on the trajectory dt =- / (g)c
Note that Yo(g) depends on to So the equation looks like
the dependent perturbation theory i dy = H/t)4. It to were
a matrix, G were a vector, and [Yolt), Yo(t)] \$0 they the
solution would involve a t-ordered product
$G(t) = T e^{-\int_{0}^{t} \chi_{s}(t') dt'} G(s)$
We can change variables for the integration: use $dt = \frac{d\bar{g}}{\beta l\bar{g}}$ and the fact that $\bar{g}(t)$ is monotonic
Exercise Why is old) monotonic? (Assume 1 coupling only)
Then $G(t) = P C - \int_{\overline{g}(0)}^{\overline{g}(t)} \frac{g(g')}{f3(g')} dg'(g(0))$ where the lower limit $\overline{g}(0) = g$
where P is a path-ordered (g-ordered) exponential
and Mis can be ignored when to is not a matrix
More on the matix case below. But first, what Agos Mis look like at leading order:
UDOS IVIIS CORE LIKE OU WARING OVAL.

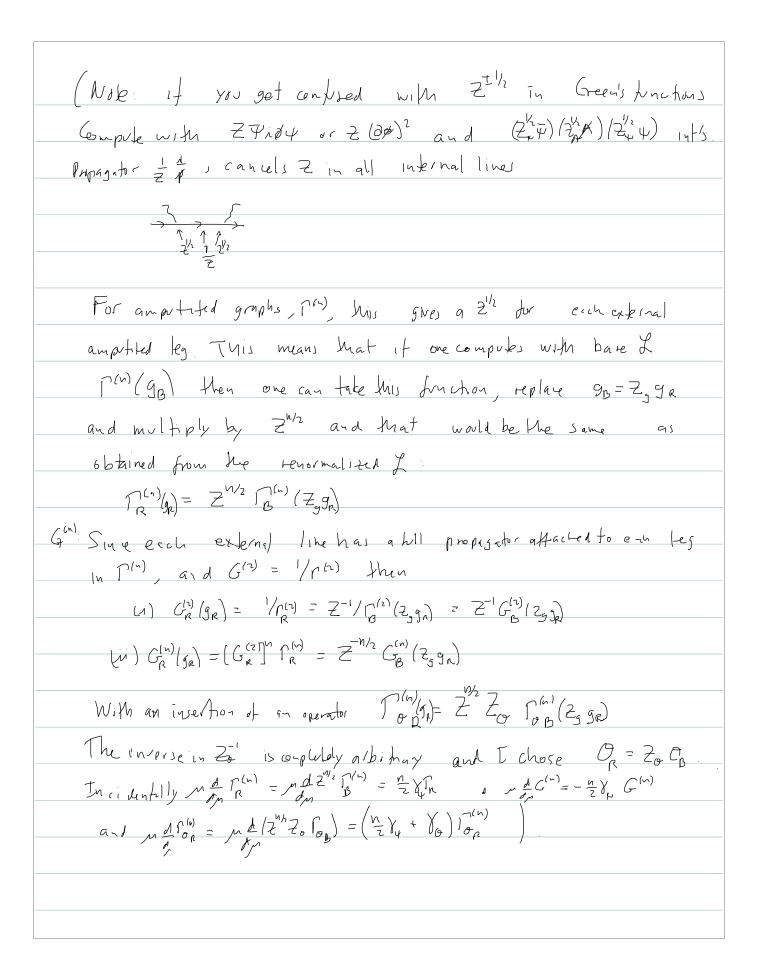
For example, at 1-loop
$$\sqrt[3]{9} = \frac{1}{9} \frac{1}{160}$$
, $\sqrt{3}(9) = -\frac{1}{160} \frac{1}{160}$.

$$= \exp\left(-\frac{3}{160} \ln \frac{3}{9} \frac{1}{10}\right) \frac{1}{10}$$


$$= \exp\left(-\frac{3}{160} \ln \frac{3}{9} \frac{1}{10}\right) \frac{1}{10}$$

$$= \left(-\frac{3}{10} \ln \frac{3}{9} \frac{1}{10}\right) \frac{1}{10}$$

$$= \left(-\frac{3}{10} \ln \frac{3}{9} \frac{1}{10}\right) \frac{1}{10}$$
So, as before, $C(0)$ is comprised at $u = M$ so that there are no large logs in comparing full a effective amplitudes,


$$= \frac{1}{10} \times \frac{3}{10} \times \frac{3}{$$

The 1st log term is as expected from (ng + Pag) C = -to C.
One can check, explicitly, to lowest order: Man (- Cix lyn) C(0) = - C19 C(0)
Alternatively, ignore running of g (which is higher order) - an instructive exercise
Sing it shows now the effect of Noning enters: n= - 700 = - 51 g2 d => (1/2) = exp(- 51 g2 h m) = 1 - 51 g2 h m = 1 - 51 g2 h
7. In C <410/4) we have seeingled scales (resumbly EFT)
7. In G <410/4) we have separated scales (Hasin to EFT) has lings had in sea
Where do we want to doa' with lage logs?
Compute & even with large logs as per last page provided I (-1) => I(u)
strys partiloxtive.
In practice use mas low or 2 GeV (or even I GeV), and let
non-portribativo methods deal with lung, a ruall log. (in, say, lattice QO)
,
Let's do an explicit example

which is is - independent, but we only know G/M) at m= Mw. This choice would have us compute the matrix element of O at n= Mw and Mis would be a tough mult-scale pablem But we know him to proceed: "No" (NGE) to MN Mps =) need to compute you Note that the dominant running (1e, largest logs) come from QCD, so we will should QED But QED is simpler, so we start with that. We compute in dimensional regularization Use d=4-E Recall $d_{IM}(A_n)=\frac{d-2}{2}$ a $d_{IM}(y)=\frac{d-1}{2}$ so he bake gauge coupling has from fox 9p A2 2A dim(g) = 4-d = 6/2 (and agrees with 12 go A" and go VRY) So we unite go = u go Za(go), and I drop "R" from renormalized grantities in what follows Before going any dether we can already review the derivation of the formula for B(B) in terms of Zg Since $Mdg_B = 0 \Rightarrow \frac{1}{2}eg^2g + B(g,e)(Z_5 + g\frac{\partial Z_5}{\partial g}) = 0$ where B(g,e) is the B huckin in d=4-e and we see B(g,e)=-1/2eg+B(g,o)

As usual $Z_g = 1 + \frac{Z_g^{(1)}}{Z_g} + \frac{Z_g^{(2)}}{Z_g} + \dots$ where $Z_g^{(n)} = Z_g^{(n)}(g)$ hirst Comes in at n-loops. Then matching powers of E we have $\beta(g) = \frac{1}{2}g^2 \frac{\partial z^{(1)}}{\partial z^{(1)}}$ We won't compole this here, but we need the - 26g piece. Similarly, You = Mar Zy y and AB = Mar ZnA Now the factor of at is fairly inconsequential (it shifts Yu, A by ZE) So ignoring if If mdy = > 0 = Nge) = 7 = 24 + 20 y So witing Zy = 1 + Zy + 111 and using Ng, +) = - 2 kg + p/g) $\Rightarrow \qquad \mathcal{F}_{\psi} = \frac{1}{2} g \frac{\partial \mathcal{F}_{\psi}^{y}}{\partial g}$ Finally, and similarly Q = Zo B => Black 320 = Zo Yo $Z_{o} = \left[+ \frac{Z_{o}^{(1)}}{E} + \cdots \right] = \int_{0}^{\infty} e^{-\frac{1}{2}g} \frac{\partial Z_{o}^{(1)}}{\partial g}$ The precise meaning of indor is from Green functions: generically $G_{\theta}^{(h)}(x_1, \dots, x_n; y) = \langle 0 | T(\mathcal{O}(y) \phi(x_1) \dots \phi(x_n) | 0 \rangle$ and Gon = Zo Zh/Z Gon

NOT FOR CLASS Want do grickly check on Zo.
E. a. avan Val
The Zhin Zo CB
Take o: j = Tymy
19te of 101
= John refix+m refix (-1 1/2)
$= -\lambda e^{2} \left(-2\right)^{2} \frac{1}{4} \gamma^{m} \int \frac{d^{m}k}{(k^{2} - m^{2})^{2}} = -\lambda e^{2} \gamma^{m} \frac{\lambda}{1 \sqrt{n^{2}}} \Gamma \left(2 - \frac{n}{2}\right) = \frac{e^{2}}{1 \sqrt{n^{2}}} \frac{2}{6} \gamma^{m}$
$=\int_{hor}^{k}\frac{d^{n}k}{dktp^{n}}\frac{-\lambda}{(ktp)^{$
= 20° P 1 2 1 2
This is 12, 10 $\sum_{k} = \frac{e^{k}}{16\pi^{k}} \frac{2}{e}$, $2(1+\sum_{k}) = h_{mi}k = 3$ $Z = 1 - \frac{e^{k}}{16\pi^{k}} \frac{2}{e}$
$\int^{R} = h_{\text{mile}} = Z Z_{0} \Gamma^{0} = Z_{0} \left(1 - \frac{e^{\lambda}}{h_{D}^{2}} \frac{\lambda}{e}\right) \left(1 + \frac{e^{\lambda}}{h_{D}^{2}} \frac{\lambda}{e}\right) \Gamma^{0} \Rightarrow Z_{0} - 1 = 0$
For a conserved current, 8=0.
[Incidentily Zy = 1- e2 2 = 1 = 1 = 1 = = 2 (- e2) = - e2).

1-loup integral formula for dim reg
$T_{P,r} = \int \frac{d^{a}k}{(1p)^{a}} \frac{(k^{2})^{p}}{(12^{2}-M^{2})^{r}} = i(-1)^{p-r} \frac{d/2}{(277)^{a}} \int_{0}^{1/2} \frac{(k^{2})^{p}}{(12^{2}+M^{2})^{r}}$
$= i \left(-1\right)^{\rho-r} \frac{1}{\binom{l_1}{n}} d/2 \cdot \left(\frac{M^1}{\binom{n}{2}}\right)^{\frac{\alpha}{2}+\rho-r} \int_{0}^{\infty} dx \cdot \frac{x^{\rho+\frac{\alpha}{2}-1}}{(x+1)^r}$
Let $y = \frac{1}{x+1}$ $dy = -\frac{1}{(x+1)^2}dx = -y^2dx$ $dx = -\frac{dy}{y^2}$
$x = \frac{1}{\lambda} - 1 = \frac{1-\lambda}{\lambda}$
$\int_{0}^{\sqrt{2}} dx \frac{x^{\rho + \frac{d}{2} - 1}}{(x+1)^{r}} = \int_{0}^{1} \frac{dy}{y^{2}} \left(\frac{1-y}{y} \right)^{\rho + \frac{d}{2} - 1} y^{r} = \int_{0}^{1} dy y^{r-\rho - \frac{d}{2} - 1} \left(1-y \right)^{\rho + \frac{d}{2} - 1} = \beta \left(r - \rho - \frac{d}{2} \right) \rho + \frac{\Lambda}{2}$
where $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$
$I_{\rho,r} = \frac{1}{(4p)^{d/2}} (-1)^{\rho-r} (M^2)^{\frac{1}{2}+\rho-r} \frac{\Gamma(r-\rho-\frac{d}{2})\Gamma(\rho+\frac{d}{2})}{\Gamma(r)\Gamma(\frac{1}{2})}$
Also useful $ab = \int_0^1 dx \frac{1}{(ax+b(1-x))^2}$
$a \rightarrow l$ de avatives, $\frac{1}{a^2b} = 2 \int_0^1 dx \frac{x}{(ax+b(1-x))^3} = tt$.
$\frac{ V_a _{U \text{ se extensively}}}{ V_a _{U \text{ se extensively}}} = \frac{1}{ V_B ^{2d-2}} \frac{ V_a _{U \text{ se extensively}}}{ V_B _{U \text{ se extensively}}} = \frac{1}{ V_B ^{2d-2}} \frac{2}{ V_B ^{2d-2}} \left(\frac{1}{ V_B ^{2d-2}} + O(\epsilon) \right)$

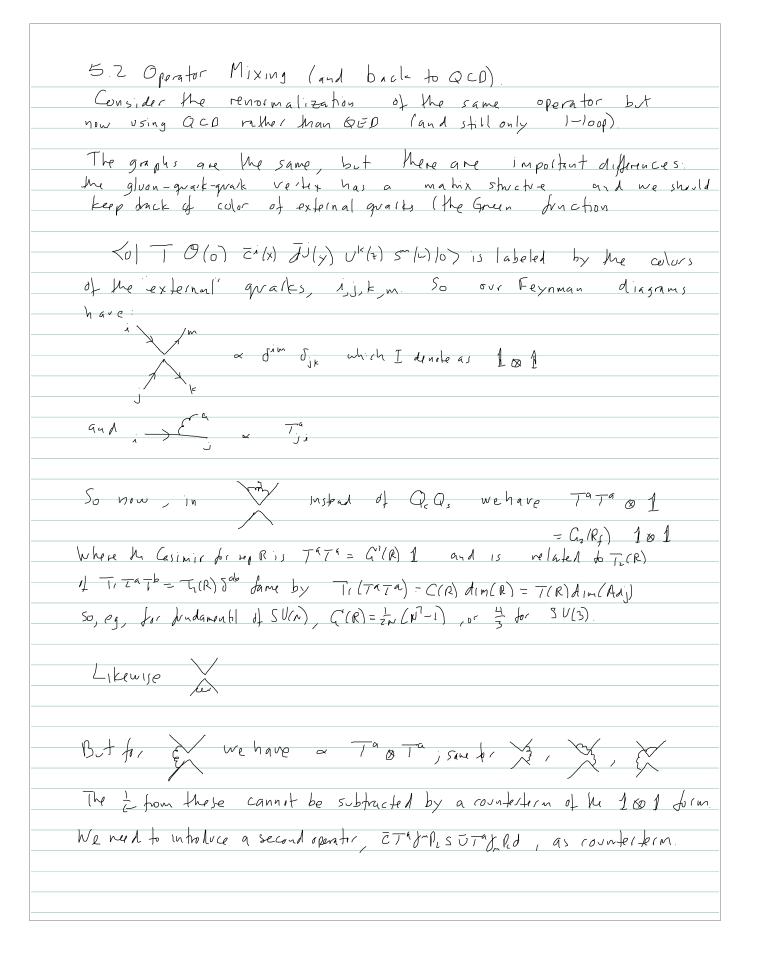
Compute 80 dr 0= 58 hc John Rd in QED I will h) omit labels "c" dt. below In) work with arbitrary charges Q. Os et (helps check calculation) fernmar = JMPL & JmPL $\frac{1}{k+p'} = \frac{d^{n}k}{(2\pi)^{n}} \left[\frac{1}{k+p'-m_{s}} \right] \frac{1}{k+p'-m_{s}} \left[\frac{1}{k+p'-m_{s}} \left(-ie Q_{c} Y^{p} \right) \right] \otimes y_{n} \left[\frac{1}{k^{2}} \right]$ I have chosen Feynman gauge. Landau gauge is also a convenient choice because at 1-loop the quark self-energy is finite lso no need to capite in that garge). Since we are only interested in UV log divergent part, that gives a =) we can set p'=p=0 (1e, expand in powers of P/k and p'/k, but then the p-dependent terms are hinite). We cannot also ignore masses since we would get IR drigeness which will show op as additional 1/6's and we don't know how much UV vs IR in Ent Em, so to speak.

But we can set Ma=Ms, sing the Ederm is My malependent. Alternatively $\frac{1}{k^{2}-m_{c}^{2}}=\frac{1}{k^{2}-M^{2}}+\left(\frac{1}{k^{2}-m_{c}^{2}}-\frac{1}{k^{2}-M^{2}}\right)=\frac{1}{k^{2}-M^{2}}+\frac{m_{c}^{2}-M^{2}}{\left(k^{2}-m^{2}\right)\left(k^{2}-m^{2}\right)}$ and the last term gives a finite contribution to the integri. So = -10 Qs Qc Jak 8 K 8 P. K 8 Dalc + finite Use I dak f (E) Kakp = [diff(E) I E map and -17, 8 - 1 1 1 2 2 = -18, 8 2 8 2 8 6 = 1 (2-4) 2 2 6 > 86 (+0(e)) (Note that I used 128 = 8" 1 nave 85" no subtlehes at 1-loop) = -12 QsQ, Y~P, 0 } R | 1/2 | 1/2 | 2 = 1/2 | 2 of QsQ,] Y~P, 0 Y~P, Lyhin is the only factor that regules calculation

$$= (-ie)^{7}Q_{c}Q_{d}\int_{(2p)^{d}}^{d^{2}k} \int_{(2^{2}-M^{2})^{2}}^{M^{2}} \left(\frac{1}{k^{2}-M^{2}} \right)^{2} / \frac{1}{k^{2}}$$

The J-matix algebra can be done in d=4. Using

I get 8-128 PL & L Ja /2 1 = 168 PL & PL 50


=-ie Q.Q. & 8 1. 8 8 8 8 1 2 7 1 [2 /102]

and now 8-8-8-1, 0 8,8,7,1 = 4 rm. 0 f.l. = 1 [2 = Q. Q.] 8-1,0 f.l.

Note that if we ignore color, 38 hc Typed = 58 hd Typec 50 the result shall be invariant under the change of labels desc or VHS

$$SVM = \frac{1}{6} \frac{3e^2}{16\pi^2} \left[Q_5Q_c + Q_4Q_0 + Q_5Q_4 + Q_6Q_0 - 4(Q_5Q_0 + Q_6Q_0) \right] \gamma n \log \gamma_0 n$$

$$= \frac{1}{6} G r \log \gamma_0 n \left(G \text{ stands for simples} \right).$$

So let 0 = 279-P, 5079, P, d What we are saying is that Then, you may ask, do I need additional appearus to subtrict insertions of Oz? $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{7$ The answer is yes. We'll verify this explicitly but first we sive a general argument. This type of grownent is very useful in characterizing EFT/s -nit just in understanding renormalization and RG. Claim: Only operators with the same granton numbers and populated for their tenormalization. We siz that the set of operator "closes" wher renor malitation You may ask: what does it matter whether I have consertens for Or? Affer all I need to consider only O, since this is what I get from matching Ipul to Zell Not grite: it Log > I (I/m) O.(m) + (I/m)O.(m) Then he effect of the off-dissonal renormalization is that even if C2(M)=0 (and ((M) to, of range) at the matching scale, n=M, on gets Cofu) = 0 at n < M. We will show this shortly. Back to the clim: if the regularization procedure respects the symmetries of the theory, then covariance under all symmetries is explicit in calculations of Feynman diagrams. This is basic OFT material, so I won't tevren it)

In our case massless & CD has separate U(s) symmeties for U, C, de and Se (It's anomalous but only boken by instantions - inclosed) So the operator must contain TL, SU, CL and de O, is a Lorentz and wolor scalar. So should be the operators in the closed set. In dim teg without masses (mass independent subtraction scheme) only operation with same mass diminsion as a (dima=6) are needed So the ops we are looking for are made at of exactly
the Y fields, and to make Leventz scalars Sign Ci Uity di and Sign di Tity ci where ijk, m are SUB) milies. Now the two above are egicl (Fiert rearrangel)
Finally the open must be also singlets. Itur many integerant singlets are in this op? The 4 fields are two 3's a how 3's, and we need to find how many ways are here to combin them into shirt. 3,3 =1 mx | x | -1 $8 \times 8 = 1 + 8 + 8 + 10 + 10 + 77$ 50 (3x3)x(3x3)= (108) 0(108) = 10 10 non-5195lets => 2 invariants, one in 1x and the objection 8x8 > O, and Oz are it To verily Mis directly, Use the color Fierz reamniquent formula Tai Tmn = 2 (din dm; - 3 dij dmn) (met his is ~ Tagta was obvious) $\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \right) = \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \right$ 50 Tato = 1 (9 10 - 17 x - 1) - 170 T1 - 2 101 - 3 T 0 T

We can complete he colorlation by waking off the not of the 14tegn!

from the QED case;

\(\times = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} =

and combining with color factors for |x| & TxT separately:

0, : \frac{1}{C} 4 \frac{9^2}{167^2} \left[(101) \left(\frac{4}{3} \right) + \left[\frac{7}{0} 7^2 \right) \left(\frac{1}{11} \right) -4 (1) \right) \right] = \frac{1}{C} \frac{9^2}{167^2} \left[\frac{16}{3} \left(\frac{1}{3} \right) \left(\frac{1}{3} \right) -12 \frac{7}{0} 7^2 \right]

Then to subtract there divergences

$$\Gamma_{0,j}^{R}(g_{R}) = Z_{j,j} (Z^{1/2})^{4} \Gamma_{0,j}^{B} (Z_{j}g_{R})$$

$$= Z_{j,j} (Z^{1/2})^{4} [X_{0,j} + X_{0,j} + X_{0,j$$

To set an idea of him his works, to 1-1.0p,

$$\int_{\mathcal{Q}_{1}}^{R} = (2^{\frac{1}{4}})^{\frac{n}{2}} \left[Z_{11} \times \theta_{1} + Z_{12} \times \theta_{2} + \frac{1}{6} \frac{9^{\frac{n}{4}}}{167^{\frac{n}{4}}} \frac{1}{3} \times \theta_{1} - \frac{1}{6} \frac{9^{\frac{n}{4}}}{167^{\frac{n}{4}}} \frac{1}{2} \times \theta_{2} \right]$$
So Mat $Z_{17} - \frac{1}{6} \frac{179^{\frac{n}{4}}}{167^{\frac{n}{4}}} = 0$ etc.

Exercise: (1) Compute war - function renormalization united Z (ii) Use this to complete the calculation of the 2x2 matrix of numbers 2(1) in $Z_{ij} = Q_{ij} + Z_{ij} + Z_{ij}$ The RCE is now M of think - M of (2h) 2 y ros) = [1 / 0 / + (/ 0)] [WR $\left[M \frac{2}{2m} + \beta(g) \frac{2}{2q} - \frac{m}{2} \gamma_{\mu} \right] \int_{0}^{(m)R} = \left(\gamma_{\sigma} \right)_{ij} \int_{0}^{(m)R} dx_{ij} dx_{i$ Here M dZij PB = (80) ik Zkj PB, in makix notahan Po = M dZ Z-1 So you Let = m Gilm Oilm 9-1 as before und Let = 0 Moder = - Ci (Vol); = - (Yo); Gi MAG =- NT C As before $\vec{G}(m) = P \exp\left(-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d\vec{g}}{r^{2}(g)} \vec{V}_{0}^{T}(g)\right) \vec{C}(m)$ As a result, if C2(M)=0 b.t C, (M) +0, then for 11 +M C2/W) +0 At $[V_0(g), V_0(g')] = 0$ because $V_0(g) = \frac{g^2}{H\pi^2}$ (1, a makix of numbers, $g = i \times dependent)$. => at 1-loop no mud for P-ordering. Moreover, an arbitrary rect NVN matrix is diagonalited by UC, U'= C, dias with U an invertible NXN matrix, and U'-'qTUT = C, dias

So, at 1-loop = UT U'-' P 5/m | U'-'C'/M | Calagonalited by a diagral makix = (ZM) 260

5.3 More operator mixing and the use of Equations of Motion The set of operators Mat close under thormalization can get lirge In principle it is infinite, but if we consider (as we have) only mass independent subtraction schemes then the number is finite: an operator of mass dimension do only mixes with operators of the same mass dimension do. As we have seen one can prother constigue this set by use of symmetries. Moreover the symmetry head not be exact. Refine a softly broken symmetry as one Mat is restured (becomes exact) as parameters with positive mass dimension (like master or cubic scalar roupling) are set to zero. The violation of symmetry must be popultional to Mese parameters so an operator of dimension do woul regular Guntertems Mat are ~ m o' who dim (o) = do-n < do; but Mat won't happen in a mass independent scheme. Stated differently, in a mass independent scheme one may set these parameters in so and restore symmetries. If under a symmetry group G the operator O transforms under some reducible representation R = 1,0 50 or, where is are distinct irreducible kgs, then here are k operators, O, , or that do not mix will each other Moreover, Or only mixes with other operators that transform as tep F under G. Example Consider again our operator Of = (5 xmPic) (VDPid) = (5 c) (Vd) for short. The aco lagrangian includes I = Triper + Zpiper + Jridd+ Jridde - Me(Zren+Zper) - Malarda+ Jada) In the limit Mc >0, My >0 this exhibits an SU(2) & SU(2) & symmetry (d) > VL (d), idem L>R, why VL SV(2)R Vale SV(2) Ois in 202=103 Mg: 1: Õ, = (5c)(vd)-(3d)(vc) 3: $\widetilde{\mathcal{O}}_{2} = (3c)/\overline{c}A) + (3a)/\overline{v}c)$ We know O, and O = (3T1c) (UTSd) gre closed under renolmalization. But $O_1 = \frac{1}{2}(\tilde{O}_1 + \tilde{O}_2)$ So this is just a change of basis that diagonalizes $\{o(g)\}$ (to all orders in g).

[Parentletical remarks:
To see Mis more explicitly, put color hodius back in
an Firz Harrange:
F_{σ} ($\mathcal{F}_{1,2}$ use: $(\mathcal{F}_{\sigma})/\overline{\upsilon}_{c}$) = $(\mathcal{F}_{\sigma})(\overline{\upsilon}_{j})$ ($\overline{\upsilon}_{j}$)
, , , , , , , , , , , , , , , , , , ,
For Θ_2 use $T_{ij}^a T_{mn}^a = \frac{1}{3} \left(\delta_{in} \delta_{mj} - \frac{1}{3} \delta_{s_i} \delta_{mn} \right)$
So $O_2 = -\frac{1}{6} \left(\bar{s}_{\alpha} c^{\alpha} \right) \left(\bar{v}_{\beta} d^{\beta} \right) + \frac{1}{2} \left(\bar{s}_{\alpha} c^{\beta} \right) \left(\bar{v}_{\beta} d^{\alpha} \right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$0_{1} = \frac{1}{2} \left(\widetilde{O}_{1} + \widetilde{O}_{2} \right) \qquad \frac{1}{2} \left(-\widetilde{O}_{1} + \widetilde{O}_{2} \right)$
$= \widetilde{\mathcal{O}}_{1}\left(-\frac{1}{12} - \frac{1}{4}\right) + \widetilde{\mathcal{O}}_{2}\left(-\frac{1}{12} + \frac{1}{4}\right)$
Oz = - 1 0, + 1 0, End paren holicil remails
Example 7:
Now consider O=(\$c)(\overline{U}s) as you would for
Again dim(0)=6
As before we can use UII) granten numbers to tell us that the
closed set has operators with un and c. But not Sids, since this is
hvangyt under 5-number (left or right).
So we are looking for dim-6 operators with ULACL. That
is dim 3 Combinations of fields that can make a Lorentz scalar
with Ve & Cl.
Let's list dim 3 ops
- y/ T where y' & y are any two Lermions
- Do Dr Dr, including, eg Do [Dr, D] - igD, Gor (+ icD for it ord is retained).
So the change from (sc)(td) to (sc)(ts) seems to have themendusly
complicated the problem. Let's limit he pissibilities using symmetry.
In the absence of GED (Soid enough for now), If W' a I an leptons they are effectively a
c-number, hence of dim=0 rather than dim=3 => no mixing => ignere leptons (or
diagramatically, med photons to get granks to interact with leptons).
* Consider pressibilitées dur 4/4 > g/q (no leptons) Non Leff de E < Mw Contains
5 quark Marois, U,d, s,c,b, so we have a hoge symmetry at our disposal:
50(5), @ 50(5)R
Now of is divial under SU(5)a and pransforms as 5x5x5x5 under SU(5)_
5x5=1+24 => (1+24) = /+24 + 24 + 24 & 24 & 24 & 24
173 - 17 21 => (1+14)8(1+14) - 17 + 14 + 24 + 24 814

Total overkill (would have to had weight in suisil of the costs of had how many Inductors in (5.5) Contain it) Instead look at din-3 operator multiplying CIVI: since it transforms like sis, it is C' - SU(4) x U(1) s x SU/5) R invariant (i) If make up of D's, Mis is already of invariant. Since we have to combine The a Cz with vectors to make a Lorentz invariant unc come in as Digital Derivatives have to act on something Ly DD Doc Thing where Tomy is a 4-index (Lorentz) invariant tensor: I July Would Word Wold or Einer Simplify: - Empo is CP ON - Use equations of motion DY=0 and integration by pits, so, eg > only v. 0000, c, = v. or [0,0,] c, = v, ory [0,0,] c, =-ig v, 8" or G, C, = v, [p, l,] r p c, = ig v, j G, D c, So v. prop c = = = (v. 8 - 7 2, (pr 6,) + (1-1) is v. 8 6, p. c. =) The only operator is U, JUTG C. (DM G,v)6 B, EOM, DMG & Z FRITHY > Opertin = [ULYMTICL \PYTTY (ii) If mad , a grack bilinear: SU/5) & scolar > either Yext or ZYin Yin - 4. 41 : 50/4) x (1) = Invariant Σνημ, ΣΨησης, 5, γ~7° S, Dut ran motra Z with Z. - Yn Z Yrt Yn, Z Yr Ym Tit

Summary
(or equivalent bases, as strated
07 = U, 8MT 2 5, 8 T 5
O3 = ULY C, (U, Y, V, + J, Y, d, + ·· + B, Y, b,)
On= Uly-Tacl(Uly-Tau+ Jly, Tad, + 1 + + bly, Tab)
O== ULYmcl (UR X VR + dR / dR + 111 + br / br)
O6 = UlyaTacilupy Taun + de y Taln + + bny Taba
What Aiggans prolive he mixing?
We know Q ↔ Oz from X + 5x + ··· (6 gmphs)
But now we can make a loop of s:
Sys - Indice, U. Y. Tacl (DVG,V)a
Howis Mis Jugatace (Total + Total) = Oy + Oc ?
2 seen to be non-local, ie of from propagator, but & ~ (99,-97 mm) 4 1
and be he second tem, -97 ms, he go from propagator makes & local!
Operators O3-Oc are called "penguin operators". The Muson is
a peculial story, Mat saveaux (John Ellis) make a bet he call ox as
tim in his next paper, and he challenge was to use "penguin" (well," Matis my understanding).
Matis my under standing). a "perguir" 7.7
Of course Xo3-6 + XO3-6 + + QO3-02 contribute to the All Gx6 Yo majorx.

Blitzer, NPB 172 (1980) 349 54 EOM in mahx elements. How do we justify using EOM in matrix elements? After all in he functional integral form-lation of QFT, [cat][dy][dy) eis includes a sum overall held configurations, not just mose that Satisfy the EOM 1 If $S[d] = \int dx I(d) \frac{\partial}{\partial x} dx$ is the action integral, then we do have $E(d) = \frac{\partial S}{\partial x}$, that is $S[\phi + \delta \phi] = S[\phi] + \int d^{4}x \frac{\delta S}{\delta \phi(x)} \delta \phi(x) + O(\delta \phi)^{3}$, so $E(\phi) = 0$ is the EOM An argument he to Politier:

ZIJ) = [[dø] eis[ø] + i [d²] Ø Change variables $\phi = \phi(a')$, $[\phi] = at \left(\frac{\delta \phi(a)}{\delta a'(b)}\right) [da']$, $S[\phi] = S[\phi(a')]$ And define \$(0) = \$' + \times \(F/B' \) where \(\times \(\times \) is a c-faction, and \(F(0) \) is some a bitmay polynom, a) function of of that may contain derivatives. Then if x is infinitished (we'll take \$/5x(x) and set x=0), and dropping the prime $Z(J) = \left[(\partial \phi) \right] de^{\dagger} \left(1 + \chi F' \right) e^{i S[\phi] + i \int J[\phi + \chi F]} + i \int \chi F(\phi) \mathcal{E}(\phi) + G(\chi^{3})$ Now, we can freely change is [Jld+xF) - is Job, which dephes tilprent Z but same physical complitudes (ie, S-mahix). I should denote the new Z by a now symbol, say Z(J), but I would (since it is melerant for S-mahix). No- the point is that SZ(J) =0 because it never depended on X. If we could ignore the det factor his would mean So wo need to establish that he Jacobian $J = \left| \frac{\delta \phi(x)}{\delta \phi'(x)} \right| \qquad do as not contribute to making elements$

 $\frac{\delta \varphi(x)}{\int \varphi'(x)} = \frac{\delta}{\delta \varphi'(x)} \left(\phi'(x) + \chi(x) F(\varphi'(x)) \right) = \left[1 + \chi(x) F'(\varphi'(x)) \right] \delta'(x-y)$ and $\left|\det\frac{\delta\phi}{\delta\rho'}\right| = \exp\left(\frac{1}{1}\epsilon\ln\frac{\delta\phi}{\delta\rho'}\right) = \exp\left(\int_{-\infty}^{\infty} \ln\left[1+\chi(x)F'/\phi'(x)\right]\int_{-\infty}^{\phi}(0)\right)$ $\frac{\delta}{\delta \chi(x)} \frac{\delta}{\delta u} \frac{\delta u}{\delta u} = \frac{F'/o'(x)}{\delta u/o}$ In dim reg 5%) -> fdok = 0, so we can ignore this Alternatively, this goes away by normal ordering it anses from self-contaction $E \times \text{ample}: J = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} w^7 \phi^2 - \frac{1}{4!} \lambda \phi^4 \qquad \mathcal{E}(\phi) = -(\partial^2 + w^2) \phi - \frac{1}{6} \lambda \phi^3$ Take 0=FE with F=\$3 50, eg $= 3! \frac{1}{2}(p_1 - m^2) = -3 \frac{6!}{6} \lambda$ Tree level 6 particle amplible (amputated + on-shell external legs) h / (-i) 40 (k2-m) = 151) which carels The combinatorics is $d^3(-3^1-m^2)\phi \star \frac{1}{4!}\phi^4 \rightarrow \frac{1}{4!}\phi^6$ to be untracted with $\theta_1 \cdot \cdot \cdot \phi_1 \rightarrow \frac{4}{21!}\phi^6$ At I-loop, 4 pt amplitude (2-)2 scattering) (red = (p-m) in = 1) + + + + + + (1) = 56/0) >0 (Ist have cancel 4th) (1 d3(2+m2) &: has no self contration of o(12 tm) Exercise: It is necessary that Fld) be at host quadratic in fields. Why? what goes wrong if F is linear in q?

Sketch:
$$G(M) = (1 + d, \overline{Z}(M)) C_0$$

$$G(M) = C_{5(M)} G(M) = C_{5(M)} G(M) = C_{5(M)} G(M) = C_{5(M)} G(M)$$

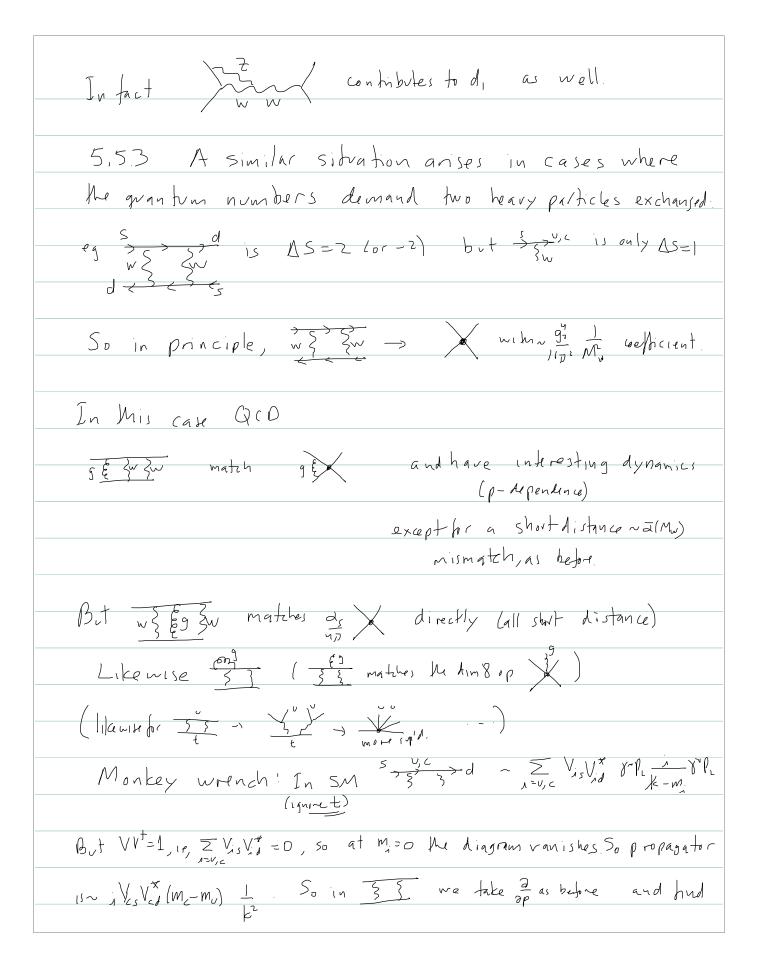
$$\left(\frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right) = \left(\frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right)^{\alpha_0} \left(\frac{1}{2} + \alpha_1 \left(\frac{\partial \mathcal{M}}{\partial \mathcal{M}} - \frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right) \right) \left(\frac{1}{2} + \alpha_1 \frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right) \left(\frac{1}{2} + \alpha_1 \frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right) \left(\frac{1}{2} + \alpha_1 \frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right) \right) \left(\frac{1}{2} + \alpha_1 \frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right) \right) \left(\frac{1}{2} + \alpha_1 \frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right) \right) \left(\frac{1}{2} + \alpha_1 \frac{\partial \mathcal{M}}{\partial \mathcal{M}} \right) \left(\frac{1}{2} + \alpha_$$

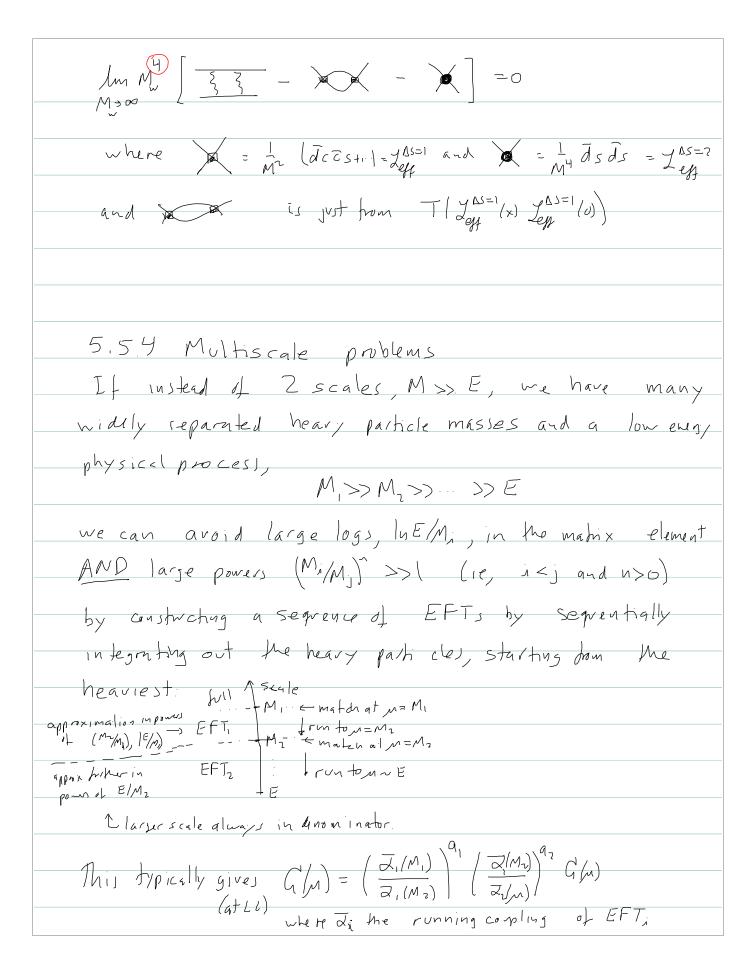
Note 1-loop running => tree level matching
2-loop running => 1-loop matching

5.5.2 In general, "matching" is the difference between full a EF theories gt M=M (or M~M, not necessarily =).

So, eg, in qED

Note Ingt


So y does not match onto sweet However sweet


is IR safe in the sense that it is finite in IR even at Pert=0=Might

So

Jok L L k L 2-m - L + In Mm + "1" Mis contributested,

Ty Ty has located.

et 1-loop of Exercise: Find you for the quarter that occurs in Ki-Fo mixing, (3, Md.) (3, Md.) (3, Md.) (3, Md.)
Estimate the corrections from this 20 short distance aco effect is the
Jurnola por Ex