Mini Course on
Effective Field Theory (EFT)

IFT/UAM

$$
2022 \text { - November } 8 \text { - December } 2
$$

Introduction
There are many approaches to EFT. They all rely on the observation that in quantum field theory very heavy exitations of fields can more or Less be ignored when looking at processes which involve low energies.
By "very heavy" exitations wo mean those that cam high energy, higher than the energy of the process (e) under investigation.
But what does his mean? After all, energy is frame dependent (not a Lorentz invariant quantity)

In the first instance we will look at exitations that are heavy because they cary a large mass,M Then (energy of excitation) $\geqslant M$, and we can demand that the processes we are interested in have (total) enemy) $\ll M$ in some frame, and therefore in many

In other instances the rent definition dh He EFT will be frame dependent and the separation of heary-light modes arbitrary (in the sense that they shift around as one changes frames). As we will see, this is still useful.

Rather than attempting a very generic description of EFTs I prefer quickly plunging into specifics - I think this helps understand the meaning and usefulness better.

So Lat's look at some issues that come up in QFT and how EFT help to address them.

Above I said that heavy exitations can be "more or less" ignored at low energies. Let's look at wis in the prototypical case: the weak interactions. Recall these have mediators, the $W^{ \pm} \& Z^{6}$ vector bosons, that have musses $\sim 100 \mathrm{GeV}$ (Ivse $c=1$ and $\hbar=1$ in there lectures, so mass $=100 \mathrm{GeV}$ means $100\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$.
If we are concerned with atomic physics, or with $e^{-} e^{+}$scattering at, say, $E_{c M} 乞 1 \mathrm{GeV}$, then we can safely ignore the weal interactions

$$
\text { rato }\left|\frac{\text { weak }}{\text { e.m. }}\right| \sim\left|\frac{q^{2}}{q^{2}-\mu_{e}^{2}}\right| \sim \frac{(\mathrm{eV})^{2}}{(100 \mathrm{GeV})^{2}} \sim 10^{-22}
$$

This is the "more" in "more or less"

Now for the "Less".
Nuclei do β-decay. So does the neutron. And $\mu^{ \pm}$ In

but we do not ignore the whole process? What we may do is $\frac{1}{q^{2}-M_{\omega}^{2}} \rightarrow-\frac{1}{M_{w}^{2}}$
describe the interaction as a "contact term", that is, a local interaction.
In equations
 $z^{2}-1 g^{2} \frac{1}{M_{W}^{2}}\left\langle\rho e^{-} \nu\right| J_{h_{\text {ad }}}^{\mu}(0) J_{\rho_{\mu \mu}}(u)|n\rangle$

(Here $J_{\text {ha }^{-1}(x)}^{(x)} \bar{p}(x)\left(g_{v} \gamma^{\prime}+g_{A} \gamma^{\gamma} \gamma_{s}\right) h(x) \quad J_{\text {ep }}^{\mu}(x)=\bar{c}(x) \gamma^{\mu}\left(1-\gamma_{s}\right) \gamma(x)$
$\hat{I}_{\text {don't get distracted by this, focus on loo al is non local) }}$
This, of course, is the famous Fermi theory "4fermionintemctir"
So while we cannot ignore the heavy field altogether, we can describe its effect by introducing a local interaction.

Incidentally, we may as well write $J_{h a d}^{\mu}(x)=\bar{U}(x) \gamma\left(1-\gamma_{i}\right) d(x)$ and it is still the that $m\left(n \rightarrow p e^{-\bar{\nu}}\right)=-g^{2} \frac{1}{m_{\bar{\nu}}^{j}}\left\langle\rho e^{-\nu}\right| J_{n_{d}}^{\mu}\left(\alpha J_{\mu_{1}, r}(\nu)|n\rangle\right.$

(and in the madix element between bayous
Some of the issues that arise:

- Radiative corrections
$\xrightarrow{w, w\left\{\gamma^{2},-e\right.}$ is finite, but
 is ∞. How do ne handle this? The 4 -fermion term is not renormalizable. We had a predic five theory (renormalizable = finite \#t of parameters), but replaudit by a nun-renormalizable one, non-predichive (∞ \# of parameters).
x Consider a W-exchange between J Gad and itself (or, nether, Ind This cold be relevant tor, say $K^{-} \rightarrow 刀^{-} 刀^{\circ}$ decay, as in

Ahora

* Scale: If we compute these radiative corrections, do we use $\alpha\left(M_{w}\right)$ os $\alpha\left(M_{i n}\right)\left(\right.$ ir $\alpha_{s}\left(M_{w}\right)$ vs $\alpha_{s}\left(M_{k}\right)$ in the $2^{\text {nd }}$ example)?
"Scale uncer taindy".
* What about processes that require exchange of 2 heavy granta (example, the case in $k^{0}-\mathrm{K}^{0}$ mixing, $\Delta s=2$):

$$
\xrightarrow[{d \xrightarrow{w} \sum_{u_{1}^{t}<}^{s_{1}^{c}} \sum_{w}^{d}}]{w^{s}} \stackrel{7 ?}{=} \overbrace{L_{r s}^{s}}^{d}
$$

If this is comet, how do we include

There does not seem to be a corresponding graph on the local interaction version

Well address these problems today. We will get into the guts of how it all works;

The scale uncertainty problem denver from having disparate scales. The technique we'll utilize to approach this is the effective held theory (EFT). If allows one to look at the physics of the shortest distance/time scaler ignoring the longer ones, and then moving sequentially to longer distanceltive.

The problems we are facing are artifacts of perturbation theory. For example, if we could compute non-perturbatively for at least pertubatively to all orders) we would use $\alpha s(\mu)$ for the coupling (together with other y (μ), say). And the (physical) amplitudes would actually be p-indepentent. Of course this is the content of the renormalization group equation ($(\in E)$, which weill use extensively.

There is a related problem worth investigating. Disparate scales often result in possible breakdown of perturbation theory. The best example is in grand unified thrones (GUTs) for which $M_{G U T}$ can be $10^{\prime 5} v, v=v_{\text {fr }}=258$ GeV
Review
To set the stage, consider $S U(5)$ grand-unification.
This is a Yang-Mills theory with gauge group SU(5) that breaks spontanerssly to $S U(3) \times S U(2)_{x} U(1)$

Gauge fields are in adjoint representation. If
$\Psi_{i} \quad i=1, \ldots, 5$ is a vector in the fundamental (defining) rep
$\Psi \rightarrow U \Psi$ with $U^{+} U=1, \quad U$ a 5×5 madix, $U=e^{i} \omega^{a} T^{a}$ gene
$U^{+} U=1 \Rightarrow T^{a t}=T^{a}, \quad \operatorname{det} U=1 \Rightarrow \operatorname{Tr} T^{a}=0 . a=1, \ldots, N^{2}-1$ foal parameters $S U(N)$.
$T^{24}=\frac{1}{2 \sqrt{15}}$ diag $(2,2,2,-3,-3)$ gives $U(1) ;$ normal 1 fed to $T, T^{2} \tau^{b}=\frac{1}{2} g^{a b}$
Write $\Psi=\left(\begin{array}{l}\frac{d}{l} \eta_{3} \\ l\end{array} \hat{L}_{2}^{2} \quad\right.$ and consider $D_{\mu} \Psi=\partial_{\mu} \Psi+i g_{S} A_{\mu}^{a} T^{a} \Psi$
Contains $1 g_{s} A_{\mu}^{a} \frac{1}{\lambda} \lambda^{a} d^{c}+i g_{2} W_{\mu}^{a} \frac{1}{2} \sigma^{a} l+\underbrace{i \hat{g}_{1} B_{\mu} \frac{1}{2 \sqrt{15}}\left(2 d^{c}-3 l\right)}_{i g_{1} B_{\mu}\left(\frac{1}{3} d^{c}-\frac{1}{2} l\right)}$

$$
\left(g_{1}=\frac{3}{\sqrt{15}}, \hat{g}_{1}\right)
$$

where, really, $g_{5}=g_{2}=\hat{g}_{1}=g_{5}=g_{\text {CuT }}$

If you compute, say, $e^{+} e^{-\rightarrow \mu^{+}} \mu^{-}$in the GUT in teems dI its copping constant, $g_{C O T}$, you'll find to 1-loop that

$$
a=a_{b o i n}\left(1+c \frac{\alpha_{C v T}}{T} \ln \frac{M_{c u T}^{2}}{v^{2}}+\cdots\right)
$$

 Now $\alpha_{\text {CuT }}$ " $\frac{1}{40}$ (1)farly typical) and c can easily be more than 71 (if not for this process, for some it the great many low ever gy processes in the PDGbouk).
Not only is the t -loup comection la ge, $\sim \theta(100 \%)$, at h-loops there will be a correction of order $\left(\frac{\alpha_{a}}{\pi} \ln \frac{M_{c o s}^{2}}{v^{2}}\right)^{n}$.

If you can account t for all the terms of the form $\left(\frac{\alpha o u r}{D} \ln \frac{M_{\text {cut }}^{2}}{v^{2}}\right)^{n}$, say by summing the comesponding $\sum_{n} C_{n}\left(\frac{\alpha_{(\omega T)}}{\pi} \ln \frac{M_{C \sqrt{1}}^{2}}{v}\right)^{n}$, then the next order gives comections of the form $\sum_{n} C_{n}^{\prime} \frac{\alpha_{L \omega T}}{T}\left(\frac{\alpha_{\omega \pi}}{\pi} \ln \frac{M_{L r}^{2}}{v^{2}}\right)^{n}$. If $\frac{\alpha_{\omega w T}}{T} \ln M_{\omega T}^{2} \sim 1$ then these subleading comections are of order $\frac{d_{1} u 7}{\pi} \sim \frac{1}{\ln \frac{M_{n}^{2}}{v^{2}}} \sim \frac{1}{70}$. Nice. All we need to do to get per-cent accuracy is to sum those "leading-logs." But tailing to do so we incur in 100% errors

The EFT technique takes advantage of the simpler form of the RGE when there is only one relevant scale (one at a time!) in the problem to sum the leiding-loj, (LL) and of need the roxt-to-ll (NLL) ie $\alpha\left(\alpha \ln \frac{M^{\prime}}{v}\right)^{n}$, ats.

Note: These is no WIEI page for
2. Appel tart-Carazzone Decoupling Theorem this, Here is your chance to 2. Appelquist - Carrazzone Decoupling Theorem. make a mark!

Not a mathematician...
Consider a theory with $\mathcal{Z}_{\text {ll }}=\mathcal{L}_{\text {light }}+\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-M^{2} \phi^{2}\right]+\mathcal{L}_{\phi \text {-light }}$ Light may involve many bields, but all of mars $<M$. It depends on parameters $g_{i}\left(\right.$ and $\left.m_{i}\right)$. $\mathcal{L}_{\alpha-1 \text { light }}$ has the interactions between ϕ and light-field and depends, on g_{i} and possibly additionally on coupling h_{1}.
Consider Greenfurations $G^{(n)}\left(p_{1}, \ldots, p_{n}\right)$ (or botferyet, amplitudes) of n light particles (associated with the light fields), nos tricked to $\left|p_{i}\right| \ll M$. Then

$$
G^{(n)}\left(\rho_{1}, \ldots, \rho_{n}\right)=Z^{n / 2} \tilde{G}^{(n)}\left(\rho_{1}, \ldots, \rho_{n}\right)\left(1+\theta\left(\frac{1}{m}\right)\right)
$$

where $\tilde{C}^{(n)}$ is computed from
uperoundizable laynagian $\quad \mathcal{L e f f}=\mathcal{Z}_{\text {light }}$
 The $\tilde{g}_{i}=\tilde{g}_{i}\left(g_{i}, M\right)$ and $z=z\left(g_{i}, M\right)$, are not functions of momenta and are universal (the same choice of \tilde{g} and z for any Green function).

The meaning is clear, heavy particles appear in $G^{(n)}$ only through virtual effects, dy construction. At large $M(M \gg m, p)$ the effects of M decrease a) $\left(\frac{\perp}{\sim}\right)^{\#}$, except when M appears in logs. The content of the decoupling theorem is that (i) there are no positive powers of M, and (i) the $\log M$ terms can all be absorbed into \tilde{g} and Z.

For the theorem to work you have to be able ts take M arbitrarily la ye hd ding g_{i} constant. It tails when $M=g v$ because either $v \rightarrow \infty$ and atv paticles gat heavy, or $g: \rightarrow \infty$ together with M, so he $\theta\left(\frac{1}{M}\right)$ comections can go as $\theta\left(\frac{g}{M}\right)=\theta\left(\frac{1}{v}\right)=$ fixed.

Added rote on decoupling:
$v \rightarrow \infty$ is fine oven if $m_{l \mid g 4 t}=y v \quad$ (yukawa) or $m_{\text {light }}^{2}=\lambda v^{2}$ (scalar quartic) prided $y \rightarrow 0$ andlor $\lambda \rightarrow 0$
keeping Me light fixed.
This is what we do for, say, electroweak interactions.

Think GUTs, say, SU(S). We can apply decoupling to th Naut harry fields. Then by construction Kef is just the M with coupling $\tilde{g}_{1,2,3}=\tilde{g}_{i, 2,}\left(g_{c o r}, \lambda_{i=1}\right)$. What's going m is hat in

 differences in $\ln \frac{M_{c u t}^{2}}{\mu^{2}}$. The γ lo $\left.t\right)($ org $)$ self-evesy $g^{2} T(g)$ has
 new coupling ha been shitted by $\ln \frac{M_{c o t}^{2}}{\mu^{2}}$:

The externs ow re has some elf every camection that con also be broken in to cantioutions fruits heavy, that go into $Z^{\prime \prime 2}$, and curbibtions fan to Light, that are produced br Left.

In a way, this is jut - factorization theorem (but not really, since of is every where).
2.1 RGE (Renormalization Group Equation) and "running" "matching" So the above diagramatic disussion explains how different coupling constant arse in the low enemy EFT for a GUT. But there is some ming unsatisfactory in that presentation: it requires that we compute loops with heavy particles to get, say, $\sigma\left(e^{-1} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$at tow every.
But we know this is not right. We can compute σ at $\sim E_{C_{\mu}} \sim 1 \mathrm{GeV}$ in $Q E D$ ignoring the effects of W / z bosons let alone x / y vector bosons. And in fact the decoupling theorem says precisely that; for this case 0 compute in QED with coupling $\alpha_{e m}\left(=\frac{e^{2}}{40}\right)$ which implicitly is given as a function of $g_{\text {cut }}$ and $\ln M_{C u T_{7}}$ (ardor $g_{1,2}$ of EW theory and $\left.\ln M_{w, z}\right)$.

While we can then blisstully ignore that $\alpha_{\text {em }}$ is a function of $g \& \ln M$, sometimes we would like to know what this functional dependence is. For example, for he EFT (the $S M$) of a GUT should have $\left(S M=S U(3) \times S U(2) \times U(1)\right.$ has couplings $\left.g_{3}, g_{2}, g_{1}\right)$

$$
\begin{array}{r}
g_{i}=g_{i}\left(g_{G, U T}, M_{c U T}\right) \quad i=1,7,3 \quad \text { (som } g_{a U T}=g_{5}, I \text { go back eforth } \\
\text { in notation) }
\end{array}
$$

3 functions of 2 -parameter $\Rightarrow 1$ relation.
So figuring out this ductional eppendence is interesting.

To figure this out, Let's think of how coupling constunts enter measurable quantities (aka, "observable's). For $\alpha_{\text {em }}$ we already toked about $\sigma\left(e^{+} e^{-} \rightarrow \mu+\mu^{-}\right)$. We could look at $\sigma(u \bar{U} \rightarrow d \bar{A})$ for α_{s}, etc. Now

At large $s, s \gg m_{\mu}^{2}$ we can ignore masses of e, μ. So here is the plan: figure ort the s-dependence of $\sigma(s)$ and use that to infer the $\ln M_{C u t}^{2} / \mu^{2}$ which we know goosinto implicit dependence ot $\alpha_{\text {ew }}$, vising knowledge about μ dependence and $\ln \mu^{2} / s$ (which will be explicit).

To $h_{\text {is }}$ end use RGE as follows. By dimensional andysis $\sigma(s, \mu, g)=\frac{1}{s} f(\mu / \bar{s}, g)$ (here g is any of the dimensions, coupling constants. We can also do more thin one at a time)

The RGE says that in the observable quantity σ we can change the renormalization point $\mu \rightarrow \mu+\delta_{\mu}$ and compensate with a change in $g \rightarrow g+\delta g=g+\beta(g) \frac{\delta \mu}{\mu}$ for sore function $\beta(g)$ so that the physical quantities, lite σ, do not change

$$
\begin{aligned}
& \sigma\left(s, \mu+\delta \mu, g+\beta \frac{\delta_{\mu}}{\mu}\right)=\sigma(s, \mu, s) \Rightarrow\left(\mu \frac{\partial}{\partial \mu}+\beta \frac{\partial}{\partial g}\right) \sigma=0 \\
& \text { or, } \boldsymbol{\sigma} \text { h th } \sigma=\frac{1}{s} f\left(\frac{\mu}{\sqrt{s}}, g\right), \quad\left(\mu \frac{\partial}{\partial \mu}+\beta \frac{\partial}{\partial g}\right) f=0
\end{aligned}
$$

Solving the RGE
Let $d t=\frac{d \mu}{\mu}$ (saves ink), $\left(\frac{\partial}{\partial t}+p(g) \frac{\partial}{\partial g}\right) f(t, g)=0$
Introduce "RGE flow": Let $\bar{g}(t, g)$ be a solution to
$\frac{d \bar{g}}{d t}=\beta(\bar{g})$ wild boundary condition $\bar{g}(0, g)=g$
Then $f(t, s)=f(0, \bar{g}(-t, g))$ is the solution.
To show this first notice that
$\frac{\partial \bar{g}}{\partial g}=\frac{\beta / \bar{g})}{\beta(g)}$. This follow, from

$$
\begin{aligned}
& d t=\frac{d \bar{g}}{\beta(\bar{g})} \Rightarrow t=\int_{g}^{\bar{g}(t, g)} \frac{d g^{\prime}}{\beta\left(g^{\prime}\right)}=\int_{g+\delta g}^{\bar{g}(t, g)+\delta g} \frac{\partial g^{\prime}}{\partial\left(g^{\prime}\right)} \\
&=-\int_{g}^{g+\delta g} \frac{d g^{\prime}}{\left(g^{\prime}\right)}+t+\int_{\bar{g}}^{\bar{g}+\delta g \frac{\partial \bar{g}}{\partial g}} \frac{d g^{\prime}}{\beta\left(g^{\prime}\right)}
\end{aligned}
$$

So we propose that $f(t, g)$ depends on its ar juments only through the combination $\bar{g}(-t, g)$: $f(t, g)=F(\bar{g}(-t, g))$. Check

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+\beta(g) \frac{\partial}{\partial g}\right) F(\bar{g}(-t, g)) & =\frac{d F}{d \bar{g}} \frac{\partial \bar{g}(-t, g)}{\partial t}+\beta(g) \frac{d F}{d g} \frac{\partial \bar{g}(-t, g)}{\partial g} \\
& =\frac{d F}{d \bar{g}}\left[-\beta(\bar{g})+\beta(\bar{g}) \frac{\beta(\bar{g})}{\beta(g)}\right]=0
\end{aligned}
$$

Finally, since $f(t, g)=F(\bar{g}(-t, g))$, then evaluating at $t=0$ $f(0, g)=F(\bar{g}(0, g))=F(g)$. So the functional de pendence of
$F(x)$ is given by $f(0, x) \Rightarrow f(t, g)=F(\bar{g}(-t, g))=f(0, \bar{g}(-t, g))$
Note that the ductional form is nit fixed by the $R G E, l e, f(o, x)$ is arbitrary. Compare, say, with $\left(v \frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right) f(x, t)=0$ having $f(x-v t, 0)$ as solutions.

We can now vie cis solution in $\sigma=\sigma\left(e_{\bar{e}}^{-} \rightarrow \mu \bar{\mu}\right)$

$$
\sigma=\frac{1}{s} f(\mu / s, g)=\frac{1}{s} f\left(1, \bar{g}\left(\ln \frac{\sqrt{s}}{\mu}, g\right)\right)
$$

By the way the amplitude $m\left(f \times|m|^{7}\right)$ also satisfies thai $R C E$ so

$$
m(M / s, g)=m\left(1, \bar{g}\left(\ln \sqrt{\sqrt{s}_{\mu}}, g\right)\right)
$$

How do we vie this to determine g_{i} in terms of $g_{6}, M_{a r}$? Well, we should get the same OM, up to corrections of order $E / M_{x, y}$. But the problem is to compute reliably. So to avoid large logs take $s \sim M_{\text {Gut }}^{2} \sim \mu^{2}$

$$
\begin{aligned}
& =g_{5}^{2}+g_{5}^{4} \frac{1}{16 刀^{2}}(\text { constant } t+\ln 1)+\cdots
\end{aligned}
$$

$\operatorname{salc}_{\text {calk }}^{S M}=\sum_{\substack{\gamma_{i} z / \omega, g j \\ g_{i} \quad g_{i}}}\langle+\rangle \sim(D) \sim\langle+\operatorname{con}\langle+\cdots$

$$
=g_{i}^{2}+g_{i}^{4} \cdot \frac{1}{16 \pi^{2}}\left(\text { cox } \tan t^{\prime}+\ln 1\right)+\cdots
$$

So to lowest order these agree if $g_{i}=g_{5}$, and recall this provided $\quad s=\mu^{2}=M_{G u T}^{2}$ (or approximately Mir, all we med is that $\frac{\alpha}{\lambda} \ln \frac{M_{a \pi T}^{2}}{\mu^{2}} \ll 1$ and $\frac{\alpha}{\lambda} \ln \frac{M_{\text {am }}^{2}}{s} \ll 1$ (and $\frac{\alpha}{\lambda} \ln \frac{\Sigma}{\mu^{2}} \ll 1$)

Setting $g_{i}=g_{5}$ at $\mu=M_{G U T}$ means, in $S M \quad m=m\left(1, \bar{g}_{j}\left(\ln \frac{\sqrt{\Sigma}}{M_{G U T}}, g_{5}\right)\right)$

But since the starting point is arbitary

$$
\bar{g}_{i}\left(\ln \frac{\sqrt{s}}{M}, g_{i \mu}\right)=\bar{g}_{i}\left(\ln \frac{\sqrt{s}}{M_{C V T}}, g_{5}\right)
$$

and setting $\sqrt{s}=\mu \quad g_{i, \mu}=\bar{g}_{,}\left(\ln \mu / M_{\omega \omega T}, g_{5}\right)$
So this is a long, round-about way of obtaining a result you probably already knew, that the coupling constants of the SM is a GUT are given by their own "running" functions $g_{p \mu}$ with the condition that at $\mu=M_{\text {out }}$ they are all equal (and equal to group)

But this careful reasoning will be ported to many other computations AND shows what you reed to do to compute corrections. More about this shortly.

Terminology:
That we $d x g_{\mu}$ at $\mu=M_{\text {cut }}$ to equal g_{5} is called "matching"
That we then compute ip for other μ using the RGE is called "running"
\Rightarrow match s NU

Let's investigate this a bit more.
Solve for $\bar{g}_{i}(t)$ using lowest or der approximation to $\beta(g)$

$$
\beta_{i}(\vec{g})=-\frac{b_{0}^{i}}{16 刀^{2}} g_{i}^{3}+\theta\left(g_{i}^{3} g_{j}^{2}\right) \text { no sumoni }
$$

Here, $\quad b_{0}=\frac{11}{3} C_{2}(6)-\frac{4}{3} n_{f} T\left(R_{f}\right)-\frac{1}{3} n_{s} T\left(R_{s}\right)$ where Tr Ta $T^{b}=T(R) \delta^{a b}$ for the R-rep of grip G and for $R=A d j T^{a} T^{a}=G_{2}(G) \perp 1$
(In genes) $T^{a} T^{a}=C_{2}(R) \mathbb{1}$; now $T, T^{a} T^{a}=G_{2}(R) \operatorname{dim} R$ and al jo $=T(R) \operatorname{dim}\left(A_{d_{j}}\right) \Rightarrow C_{2}\left(A_{d j}\right)=T\left(A_{d j}\right)=N$ for SU(N))
Also $n_{f}=\#$ Dirac fermions in rep $R_{f}, n_{s}=\#$ complex scalars in R_{s} (put a $1 / 2$ for $W_{c y}$ l or Majurana fermions, and for relscalans) Example:
For SU(3) of SM $b_{0}^{(3)}=\frac{11}{3} \cdot 3-\frac{4}{3} \cdot 6 \cdot \frac{1}{2}=7$
${ }^{*} T($ fund mental $)=3$
Exercise: $b_{0}^{(2)}=\frac{19}{6}$
For $U(1), C_{2}(G)=0$ (Exercile:why?) and $T(R)=Q_{R}^{2}$
where Q_{π} is the charge under $\left(K_{1}\right)$ transformation for example, for $U(1)_{S_{M}}$ (hypercharge, $Q_{h} \rightarrow Y$), $Y=-\frac{1}{2}$ fir l_{L}. Exercise: $b_{0}^{(1)}=-6$

Solve $\frac{d \bar{g}}{d t}=-\frac{G}{16 \pi^{2}} \bar{g}^{3} \Rightarrow \frac{d}{d t}\left(\frac{1}{\bar{g}^{2}}\right)=-2 \frac{1}{\bar{g}^{3}}\left(-\frac{G^{-}-\vec{g}}{16 \pi^{2}}\right)=\frac{G}{8 \pi^{2}}$

$$
\begin{gathered}
\Rightarrow \quad \frac{1}{\bar{g}^{2}(t)}-\frac{1}{g^{2}}=\frac{C_{1}}{8 刀^{2}} t \text { or with } \bar{\alpha}=\frac{\bar{g}^{2}}{4 刀} \\
\quad \frac{1}{\bar{\alpha}(t)}-\frac{1}{\alpha}=\frac{C_{1}}{2 p} t
\end{gathered}
$$

We can use this sororal ways: recall $g_{j, \mu}=\bar{g}_{i}\left(\ln _{\text {M }}^{M_{\omega T}}, g_{5}\right)$ A $\quad \alpha_{i(M)}=\bar{\alpha}_{i}\left(\ln \frac{\mu}{M_{C U T}}, g_{5}\right)=\left(\frac{1}{\alpha_{5}}+\frac{b_{0}^{i}}{2 \pi} \ln \frac{\mu}{M_{C U T}}\right)^{\prime}=\frac{\alpha_{5}}{1+\frac{b_{0}^{i}}{2 D} \frac{\alpha_{5}}{\operatorname{lin}} \frac{\mu}{M_{\text {CUT }}}}$
Which shows explicitly the dependence of α_{i} on α_{5} i ln $M_{\text {cor }}$
Taking the difference at t^{\prime}, t we eliminate α_{5}

$$
\frac{1}{\alpha(L)}-\frac{1}{\alpha\left(t^{\prime}\right)}=\frac{C}{2 \pi}\left(t-t^{\prime}\right)=\frac{G}{2 \pi} \ln \mu / \mu^{r}
$$

This can be used to input $\bar{\alpha}_{(}\left(M_{z}\right)$ and compute $\bar{\alpha}(\mu)$ a function of μ and see at what point all 3 couplings meet -if at all? That then determines $\alpha_{5}=\bar{\alpha}_{1}\left(M_{\omega v z}\right)=\bar{\alpha}_{2}\left(m_{(\omega)}\right)=\bar{\alpha}_{3}\left(\mu_{v a}\right)$ Note I used $\hat{\alpha}_{1}=\frac{5}{3} \alpha_{1}$
Exercise: try this? (see my attempt, next page)
Use $\alpha_{3}\left(M_{z}\right)=0,11$, and for α_{1}, α_{2} recall $e=\frac{g_{1} g_{2}}{\sqrt{g_{1}^{2}+g_{2}^{2}}}=9, \cos \theta$ and $\cos \theta=\frac{M_{w}}{M_{7}} \approx \frac{80}{90}$ and $\frac{e^{2}}{4 \pi}\left(M_{z}\right)=\alpha_{\text {en }}\left(M_{z}\right) \approx \frac{1}{127}$
Plot linear functions: $\frac{1}{\bar{\alpha}_{i}(t)}=\frac{1}{\left.\alpha_{i} / M_{z}\right)}+\frac{b_{0}^{\hat{~}}}{2 \pi} t \quad\left(t=\mid \ln \mu_{1} / M_{z}\right)$

Exercise: Consider the $n H D M=n$ Wigs dodblets extension of the $S M(1 e, S M$ is $n=1)$. Do the coupling constants tend to unity better than in the SM for some values of n ?

Note that

$$
\bar{\alpha}_{1}(t)=\alpha_{5} \frac{1}{1+\frac{C_{1} d_{5}}{2 \nabla} t}=\alpha_{5} \sum_{n=0}^{\infty}\left(\frac{b_{0}^{\dot{1}}}{2 \nabla} \alpha_{5} \ln \frac{M_{a_{0}}}{\mu}\right)^{n}
$$

\Rightarrow the $R G E$ has summed op the $(\alpha \ln M)^{n}$ terms. This is called a "Leading-Log' (LL) resumption.

Note also that
(i) "matching" involved $\quad \underset{\sim}{r}\left\langle\left.\right|_{\text {ar }}=\right\rangle \sim\left\langle\left.\right|_{\text {sm }} \rightarrow\right.$ tree level
(ii) "running" involved Hoop beta function (foo mes 3-n) This is fail common, mate= tres, rus= loup

How do we improve approximation?
(i) Match 1-loop $\Rightarrow g_{i}=g_{5}\left(1+\#_{5}^{2}\right) \quad$ at $\mu=M_{\text {Gui }}$

This formally gives $\left.\alpha_{1} \mid i\right)-\alpha_{5}\left[\sum_{L}\left(\frac{b_{i}^{i}}{2 \pi} \alpha_{k} \ln \frac{\mu_{\mu \mu}}{n}\right)^{n}+\alpha_{5} \sum_{n} d_{n}\left(\alpha_{5} \ln \frac{M_{a s}}{\mu}\right)^{n}\right]$ le, includes next-toleading log (NLL) resummation Ex: show hiss! (solve RLS to 2wloops)

For the 1-loop matching, diagramatieally

Take difference.

$$
\rangle_{g_{i} g_{i}}<\sum_{g_{5} g_{5}} \ll g_{g_{5}}<H_{g_{5}}^{H / H / L}
$$

the light loop cancells out since at this order $g_{i}=g_{5}$

Once the leading term in enesy $/ M_{H 1}$ is selected (io, subleading terms draped) we obtain:

$$
g_{i}^{2}-g_{5}^{2}=g_{5}^{4}(\ln (\sim 1)+c u s t a n t) .
$$

